Исследовано влияние оптических характеристик многоцветовой пирометрии излучения и термометрируемых объектов на методические погрешности линейной симметрично-волновой пирометрии излучения. Установлено, что даже при сушественных отклонениях спектральных распределений излучательной способности от линейных, погрешности симметрично-волновой термометрии не превышают 0,5 % и могут быть дополнительно снижены оптимальным сочетанием оптических характеристик пирометрии излучения. В исследованных условиях, погрешности известных методов оптической термометрии в 2,4 – 25,0 раз превышают погрешности симметрично-волновой пирометрии излучения.

УДК 526.521.3

Л. Ф. Жуков,

докт. техн. наук, **А. Л. Корниенко,** асп. Физико технологический институт металлов и сплавов НАН Украины 03680, Киев – 142, бул. Вернадского, 34/1 E-mail: zhukov@i.com.ua, thermogauge@gmail.com

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК ПИРОМЕТРИИ ИЗЛУЧЕНИЯ НА ПОГРЕШНОСТИ ЛИНЕЙНОЙ МНОГОЦВЕТОВОЙ СИММЕТРИЧНО-ВОЛНОВОЙ ТЕРМОМЕТРИИ

Введение

Симметрично-волновая пирометрия излучения (СВПИ) является одним из разрабатываемых ФТИМС HAH Украины направлений многоцветовой термометрии.[1,2] Во многих случаях практического применения СВПИ имеет явные преимущества по сравнению с известными решениями[3]. Эти преимущества определяются прежде всего минимально возможным количеством рабочих длин волн и алгоритмами обработки первичной пирометрической простыми информации, обеспечивющими более высокие метрологические характеристики [4-7]. Наиболее простой здесь является линейная СВПИ. В случае термометрируемых объектов с линейными распределениями излучательной способности, в том числе со спадающими, возрастающими, серыми термодинамически равновесными, И методические погрешности линейной СВПИ определяются исключительно дискретностью перебора значений температуры контролируемых объектов. Современная микропроцессорная и компьютерная техника позволяет выбрать дискретность в долях кельвина и тем самым приблизить эти погрешности к нулю. Интересным является исследование пределов отклонений спектральных распределний излучательной способности объектов от линейных, при которых погрешности линейной СВПИ принимают вполне допустимые для технических измерений температуры и технологического контроля значения.

Изложение основного материала

Оптические характеристики СВПИ можно разделить на 2 группы, относящиеся к объектам и системам пирометрии излучения. Характеристики системы определяются

спектральным диапазоном $\lambda_3 - \lambda_1$, задающим $\Delta \lambda = (\lambda_3 - \lambda_1) / 2$, мкм и длиной средней волны λ_2 , мкм. Термометрируемые объекты имеют более сложную классификацию характеристик, представленную в табл.1.

Таблица 1

Оптические характеристики термометрируемых объектов							
	качественные				количественные		
Объекты	спектральные распределения $\varepsilon = f(\lambda)$	математические описания распределений	обозначения распределений	Кн	Кк, м ⁻¹		
	монотонные линейные						
абсолютно черные	1. Термодинамически равновесные $\varepsilon_{\lambda 1} = \varepsilon_{\lambda 2} = \varepsilon_{\lambda 3} = 1$		TP	0	0		
серые	2. Серые	$\epsilon_{\lambda 1} = \epsilon_{\lambda 2} = \epsilon_{\lambda 3} = \text{const} < 1$		0	0		
окрашенные	3. Спадающие линейные	$1 \ge \varepsilon_{\lambda 1} > \varepsilon_{\lambda 2} > \varepsilon_{\lambda 3}$	СЛ	0	>0		
	4. Возрастающие линейные	$\epsilon_{\lambda 1} < \epsilon_{\lambda 2} < \epsilon_{\lambda 3} \le 1$	ВЛ	0	0>		
	монотонные нелинейные						
	1. Спадающие выпуклые	$1 \ge \epsilon_{\lambda 1} > \epsilon_{\lambda 2} > \epsilon_{\lambda 3}$	СВП	0>	>0		
	2. Спадающие вогнутые	$1 \ge \varepsilon_{\lambda 1} > \varepsilon_{\lambda 2} > \varepsilon \lambda_3$	СВГ	0>	>0		
	3. Возрастающие выпуклые	$\epsilon\lambda_1 < \epsilon\lambda_2 < \epsilon\lambda_3 \leq 1$	ВВП	>0	0>		
	4. Возрастающие вогнутые	$\epsilon\lambda_1 < \epsilon\lambda_2 < \epsilon\lambda_3 \leq 1$	ВВГ	>0	>0		

На рис.1 приведены графики классифицированных в табл.1 спектральных распределений излучательной способности $\varepsilon = f(\lambda)$.

Рис. 1 – Графики спектральных распределений излучательной способности

В соответствии с приведенной классификацией спектральные распределения излучательной способности описываются качественно и количественно. Качественные характеристики вполне очевидны, представлены в табл.1 и на рис.1 и не требуют

46

дополнительного обсуждения. Распределения количественно определяются коэффициентом нелинейности Кн, коэффициентом крутизны Кк и не приведенным в таблице диапазоном излучательной способности Δε. Безразмерный Кн рассчитывается по следующему выражению (рис. 1д)

$$\mathbf{K}_{\mathrm{H}} = \mathbf{\varepsilon}_{1} - \mathbf{\varepsilon}_{2\mathrm{J}} \tag{1}$$

где ε_2 – излучательная способность объекта на длине волны λ_2 ;

 $\epsilon_{2\pi}$ – излучательная способность объекта на длине волны λ_2 для линейно аппроксимированного распределения $\epsilon_{\pi} = f(\lambda)$.

Кк определяется выражением

$$K_{K} = \frac{\varepsilon_{3} - \varepsilon_{1}}{\lambda_{3} - \lambda_{1}}, M^{-1}$$
⁽²⁾

где ε_3 и ε_1 – значения излучательной способности объекта соответственно на длинах волн λ_3 и λ_1 .

 $\Delta \epsilon$ – определяется значениями излучательной способности на граничных длинах волн, т.е. на λ_1 и λ_3 .

В настоящей статье представлены результаты исследований влияния $\Delta\lambda$ на погрешности СВПИ при граничных значениях остальных оптических характеристиках пирометрии излучения. На рис. 2 показаны зависимости погрешностей СВПИ от $\Delta\lambda$ при $\lambda_2 = 0,8$ мкм, Кн от - 0,005343 до 0,005343, Кк от -184541 до 184541 м⁻¹, $\Delta\epsilon = 0,3588$ - 0,4661 для указанных в табл. 1 спектральных распределений излучательной способности.

В качестве СВП-распределения выбрано наиболее изученное в оптике металлов и термометрии и детально представленное в литературе экспериментальное распределение излучательной способности вольфрама СВПw [4]. Для СВГ-, ВВП- и ВВГ – распределений использовали соответствующие зеркальные отображения СВПм-распределения, т.е. СВГзм-, ВВПзм- и ВВГзм-распределения. Авторами значительные колебания экспериментальных установлено, что спектральных распределений излучательной способности вольфрама не подтверждаются изменениями его электромагнитных характеристик по спектру и температуре. Обосновать эти колебания можно прежде всего погрешностями трудно реализуемых экспериментальных исследований оптических свойств этого металла. Поэтому, экспериментальные распределения были аппроксимированы полиномом шестой степени

$$\varepsilon_{a} = -0.0906\lambda_{n}^{6} + 0.6024\lambda_{n}^{5} - 1.6045\lambda_{n}^{4} + 2.2555\lambda_{n}^{3} - 1.8327\lambda_{n}^{2} + 0.6475\lambda_{n} + 0.4015.$$

Зависимости для аппроксимированных распределений излучательной способности также приведены на рис. 2 и обозначены соответственно СВПаw, СВГазw, ВВПазw и ВВГазw.

3-4'2014 СВІТЛОТЕХНІКА ТА ЕЛЕКТРОЕНЕРГЕТИКА

Анализ полученных результатов показывает, что зависимости ЛЛЯ аппроксимированных распределений имеют монотонный спадающий характер и в диапазоне $\Delta\lambda$ от 0,1 до 0,3 мкм проходят значительно ниже экстремальных зависимостей для экспериментальных характеристик металла. Причем, погрешности СВПИ для СВГ- и СВП-распределений практически одинаковы, минимальны и не превышают 0,5%, а для ВВП-и ВВГ-распределений- достигают соответственно 1,0 и 1,3%. Для $\Delta\lambda < 0,1$ мкм погрешности для экспериментальных распределений значительно меньше погрешностей аппроксимированных распределений. Объясняется это более линейным распределением экспериментальных ε_1 , ε_2 и ε_3 . При $\Delta\lambda > 0.3$ мкм экспериментальных и аппроксимированных распределений погрешности для совпадают или могут находится выше или ниже относительно друг друга. Такие отличия погрешностей объясняются отклонениями экспериментальных распределений излучательной способности вольфрама от аппроксимированных. Поэтому для последующего анализа и количественных оценок мы будем в основном использовать результаты, полученные для аппроксимированных распределений. Общей для всех распределений является тенденция уменьшения погрешностей с увеличением $\Delta\lambda$. Это объясняется тем, что с увеличением Δλ спектральные распределения излучательной способности для длин волн λ_1 , λ_2 , λ_3 приближаются к линейным.

Рис. 2 – Зависимости погрешностей линейной СВПИ от $\Delta\lambda$

Обусловленные отклонениями спектральных распределений излучательной способности термометрируемых объектов от линейных методические погрешности СВПИ носят систематический характер и имеют различные знаки ($\delta_{BB\Gamma}$ >0, $\delta_{CB\Gamma}$ >0, $\delta_{BB\Pi}$ <0, $\delta_{CB\Pi}$ <0).

Для сглаженных распределений є зависимости $\delta_{CB\Pi U} = f(\Delta \lambda)$, в исследованном интервале $\Delta \lambda$, имеют слабо выраженный монотонный характер.

Примечательной является закономерная связь погрешностей с характером распределений излучательной способности. Максимальные погрешности получены для ВВГ-распределения и уменьшаются соответственно для СВГ-, ВВП- и СВП-распределений. Установленная закономерность определяется количеством рабочих длин волн СВПИ, в областях высоких и низких значений излучательной способности. Погрешности измерений используемых в СВПИ S₁, S₂ и S₃ снижаются с повышением излучательной способности и наоборот. Чем больше длин волн используется в области низких значений ε . В случае ВВП- и СВП- и СВП-распределений ε тем выше погрешности СВПИ. Для ВВГ- и СВГ-распределений соответственно λ_1 , λ_2 и λ_2 , λ_3 находятся в области низких значений ε . В случае ВВП- и СВП-распределений в области низких значений ε находятся соответственно λ_1 , и λ_3 . Безусловно погрешности измерений S₁, S₂ и S₃ определяются также длинами волн λ_1 , λ_2 и λ_3 в соответствии с пирометрическими уравнениями, полученными из закона Вина

$$\begin{cases} \frac{1}{T} - \frac{1}{S_1} = \frac{\lambda_1}{c_2} \ln \varepsilon_1 \\ \frac{1}{T} - \frac{1}{S_2} = \frac{\lambda_2}{c_2} \ln \varepsilon_2 \\ \frac{1}{T} - \frac{1}{S_3} = \frac{\lambda_1}{c_2} \ln \varepsilon_3 \end{cases}$$
(3)

где Т – температура термометрируемого объекта, К;

 S_1, S_2 и S_3 – температуры излучения термометрируемого объекта на длинах волн соответственно λ_1, λ_2 и λ_3, K ;

 λ_1 , λ_2 и λ_3 — эффективные длины рабочих волн многоцветовой пирометрической системы, м;

c₂ = hc/k= 0,014388, К•м – вторая постоянная Планка, в которой

h = 6,62619•10⁻³⁴ Дж•с- постоянная Планка;

с = 299792458 м/с – скорость света в вакууме;

 $k = 1,380662(44) \cdot 10^{-23}$ Дж/К – постоянная Больцмана;

 ε_1 , ε_2 и ε_3 – излучательная способность термометрируемого объекта соответственно на рабочих длинах волн λ_1 , λ_2 и λ_3 .

Поэтому, $\delta_{BB\Gamma} > \delta_{CB\Gamma}$, т.к. $\lambda_3 > \lambda_1$. Однако доминирующим в СВПИ для изученных наиболее типичных распределений є является излучательная способность, но при определенном влиянии длины волны $\delta_{BB\Pi} > \delta_{CB\Pi}$.

СВПИ идеально работает в случае линейных спектральных распределений излучательной способности ТР, СР, СЛ и ВЛ, для которых погрешности равны нулю.

При Δλ = 0,05 мкм погрешности СВПИ устремляются к нулю для экспериментального и зеркальных распределений излучательной способности СВПw, СВГзw, ВВПзw и ВВГзw за счет их приближения к линейным.

Для разработки методов и средств СВПИ и практического их использования необходимо изучить влияние $\Delta\lambda$ в реальных диапазонах изменения остальных оптических характеристик пирометрии излучения (λ_2 , Кн, Кк и $\Delta\epsilon$). Влияние этих характеристик на погрешности СВПИ исследовано для СВПаw- распределения излучательной способности и представлено на рис. 3 и в табл. 2, 3. В диапазоне изменений λ_2 от 0,6 до 1,1 мкм минимальные и максимальные погрешности СВПИ

имеют место соответственно при $\lambda_2 = 1,1$ мкм и $\lambda_2 = 0,8$ мкм (рис. 3). Объясняется это тем, что при $\lambda_2 = 1,1$ мкм и $\lambda_2 = 0,8$ мкм для исследованных значений $\Delta\lambda$ СВПИ осуществляется соответственно на наиболее линейном и нелинейном участках зависимости $\varepsilon_{\text{СВПаw}} = f(\lambda)$. Это подтверждается также проведенным выше анализом влияния $\Delta\lambda$ на погрешност СВПИ. При $\lambda_2 = 1,1$ мкм и $\Delta\lambda = 0,3$ методическая погрешность СВПИ исключается, так как ε_1 , ε_2 и ε_3 лежат на одной линии. Для значений $\lambda_2 = 0,6$; 0,9 и 1,0 мкм погрешности находятся между указанными минимальным при $\lambda_2 = 1,1$ мкм и максимальным при $\lambda_2 = 0,8$ мкм уровнями.

Рис. 3 – Зависимости погрешностей СВПИ от $\Delta\lambda$ для граничных λ_2

В табл. 2 представлены погрешности СВПИ для различных Кн при остальных фиксированных оптических характеристиках (λ_2 , $\Delta\lambda$, Кк и $\Delta\epsilon$). Для получения различных Кн изменялось значение ϵ_2 . Поэтому в 1-4 распределениях излучательной способности ϵ_2 соответственно равно $\epsilon_{2CBПлаw}$, $\epsilon_{2CBПaw-0,1}$, $\epsilon_{2CBПaw+0,1}$, где

 $\epsilon_{2CB\Pi_{лаw}} - \epsilon_2$ линейно-аппроксимированного распределения CBПаw;

 $\epsilon_{2CB\Pi aw-0,1}$ – уменьшенное на 0,1 значение $\epsilon_{2CB\Pi aw}$ ($\epsilon_{2CB\Pi aw} < \epsilon_{2CB\Pi aw-0,1} < \epsilon_{2CB\Pi aw}$); $\epsilon_{2CB\Pi aw+0,1}$ – увеличенное на 0,1 значение $\epsilon_{2CB\Pi aw}$ ($\epsilon_{2CB\Pi aw} < \epsilon_{2CB\Pi aw+0,1} < \epsilon_{1}$).

Таблица 2

Погрешности линейной СВПИ для различных, в пределах от 0 до – 0,010643, Кн при $\Delta\lambda = 0,3$ мкм; $\lambda_2 = 0,8$, мкм; $\Delta\epsilon = 0,3588 - 0,4661$; Кк = -178946, м ⁻¹ ; T = 1600К					
№п/п	ϵ_2	Кн	погрешности		
			∆=Т _{СВПИ} -Т, К	δ=(Т _{СВПИ} -Т/Т)·100, %	
1	€ _{2CBПлаw}	0	0	0	
2	Е _{2СВПаw-0,1}	0,002672	-4	-0,250	
3	ε _{2CBΠaw}	0,005343	-8	-0,500	
4	Е _{2СВПаw+0,1}	0,010643	-15	-0,938	

Из табл.2 следует, что при изменении распределения от линейного до СВПаw, т.е. при увеличении Кн от 0 до 0,005343 погрешности СВПИ не превышают – 0,5%. Примечательно, что даже при Кн значительно превышающих Кн вольфрама и других термометрируемых объектов, в том числе многих металлов и их сплавов (распределение №4) погрешности линейной СВПИ не превышают 1%. Это говорит о широких метрологических возможностях линейной СВПИ для оптических измерений температуры объектов, спектральное распределение излучательной способности которых значительно отличаются от линейных.

В табл.3 приведены погрешности линейной СВПИ для различных, перекрывающих реальные объкеты, значений Кк (от 0 до -27833) при постоянных $\Delta\lambda$, λ_2 и Кн, в диапазоне $\Delta\epsilon$ от 0,3288 до 0,4961. Для получения различных значений Кк хорда спектрального распределения поворачивалась вокруг точки $\epsilon_{2CBПлаw}$ при неизменном значении $\epsilon_{2CBПaw}$. При таком изменении Кк исключается влияние остальных оптических характеристик, т.к. $\Delta\lambda$, λ_2 и Кн остаются постоянными.

Таблица З

Погрешности линейной СВПИ для различных Кк, в пределах от 0 до – 278833 м ⁻¹ , при Δλ=0,3 мкм; λ ₂ = 0,8, мкм; Кн =0,005343; Δε =0,3288 - 0,4961;T=1600K					
№п/п Кк	Кк м ⁻¹	распределения є	погрешности		
	IXK, M		∆=Т _{СВПИ} -Т, К	$\delta = (T_{CB\Pi H} - T/T) \cdot 100, \%$	
1	0	$\epsilon_1 = \epsilon_3 < \epsilon_2$	-10	-0,625	
2	-17833,3	$\epsilon_1 = \epsilon_2 > \epsilon_3$	-10	-0,625	
3	-78833,3	$\epsilon_1 = \epsilon_{1CB\Pi aw-0,03} > \epsilon_2 > \epsilon_3$	-9	-0,563	
4	-178946	$\epsilon_1 = \epsilon_{1CB\Pi aw} > \epsilon_2 > \epsilon_3$	-8	-0,500	
5	-278833	$\epsilon_1 = \epsilon_{1CB\Pi aw+0,03} > \epsilon_2 > \epsilon_3$	-8	-0,500	

Анализ табл. 3 показывает, что при изменении Кк в широком, перекрывающем реальные объекты, диапазоне погрешности СВПИ изменяются незначительно. Для обычных монотонных СВП-распределений 3-5 Δ составляет 8-9 К. Максимальное значение Δ равно 10 К и имеет место для более редких переходых распредлений излучательной способности 2. Интересно, что с переходом к экстремальным распределениям 1 (Кк = 0) погрешности СВПИ снова уменьшаются до 9 К. Такие изменения Δ в пределах реальных значений Кк объясняются тем, что с увеличением Кк, даже при постоянном Кн, СВП-распределение будет ближе к СЛ распределению.

Известно, что при повышении излучательной способности методические погрешности классической энергетической и спектрального отношения двухцветовой, а также многоцветовой пирометрии излучения снижаются. Многоцветовая СВПИ не является исключением и ее методические погрешности также должны уменьшаться при повышении ε . В принципе эти зависимости погрешностей от ε могут быть использованы для первичной оценки правильности разрабатываемых новых направлений и методов оптической термометрии. Особый интерес для изучения метрологических характеристик СВПИ представляют количественные оценки этого влияния $\Delta\varepsilon$. В табл. 4 приведены пределы изменений $\delta_{\text{СВПИаw}}$ при уменьшении $\Delta\varepsilon$ от 0,7588 - 0,8661 до 0,2588 - 0,3661 в спектральном диапазоне от 0,5 до 1,1 мкм. Изменения $\Delta\varepsilon$ были получены путем смещения аппроксимированного спектрального

распределения излучательной способности вольфрама $\varepsilon_{CB\Pi aw} = f(\lambda)$ соответственно вверх по оси ε на 0,4 и вниз на 0,1. При таких изменениях излучательной способности Кн и Кк спектральных распределений остаются без изменений и соответственно исключается их комплексное влияние на погрешности. С указанным уменьшением излучательной способности, при остальных постоянных условиях, $\delta_{CB\Pi Haw}$ повышается от 0,3 до 0,6%.

				Таблица 4
Погрешности линейной СВПИ для различных, в пределах от 0,2588 до 0,8661, Δε при Δλ=0,3 мкм; λ ₂ = 0,8, мкм; Кн =0,005343; Кк = -178946, м ⁻¹ ; T=1600K				
№п/п	Δε	распределения є	погрешности	
		$\varepsilon = f(\lambda)$	$\Delta = T_{CB\Pi U}$ -Т, К	δ=(Т _{СВПИ} -Т/Т)х100, %
1	0,7588 - 0,8661	Е _{СВПаw+0,4}	-5	-0,313
2	0,3588 - 0,4661	ε _{CBΠaw}	-8	-0,500
3	0,2588 - 0,3661	Е _{СВПаw-0,1}	-10	-0,625

В этих условиях методические погрешности классической энергетической одноцветовой и спектрального отношения двухцветовой пирометрии излучения вольфрама соответственно достигают 4 – 11 и 2,6 – 3,0 %. Погрешности измерений температуры вольфрама 1200 К известной «полихроматической (трехцветовой) пирометрии с использованием монохроматических спектральных каналов» достигают 16,8 К, т.е. 1,4% и 22,8 К, т.е. 1,9% в спектральных диапазонах 0,5 – 0,8 и 0,5 – 1,4 мкм, соответственно [8, 9].

Выводы

Таким образом, исследовано влияние оптических характеристик пирометрии излучения и объектов термометрии на погрешности линейной многоцветовой симметрично-волновй термометрии. Исследования выполнены в широких диапазонах характеристик наиболее перспективных кремниевых детекторов излучения и объектов термометрии. В качестве базового термометрического объекта использован вольфрам с наиболее детально изученными излучательными характеристиками. В результате исследований установлено, что при значительных, перекрывающих характеристики реальных термометрируемых объектов, отклонениях спектральных распределений излучательной способности ОТ линейных, линейная симметрично-волновая пирометрия излучения обеспечивает вполне приемлемые результаты. Например, погрешности симметрично-волновой пирометрии излучения подавляющего большинства металлов и их сплавов, в том числе вольфрама, не превышают 0,5% и могут быть дополнительно снижены оптимизацией оптических характеристик пирометрической системы, в том числе оптимизацией спектрального диапазона и длины средней волны. Для большинства реальных распределений излучательной способности погрешности симметрично-волновой пирометрии в 9,1 – 25,0 и 5,9 – 6,8, а также 2,4 - 3,3 раза ниже погрешностей соответственно классической энергетической одноцветовой и спектрального отношения двухцветовой, а также известной полихроматической пирометрии излучения.

Литература

1. Жуков Л. Ф. Исследование и разработка методов многоцветовой оптической термометрии / Л. Ф. Жуков, А. В. Богдан // Инженерно-физический журнал. – 2002. – №5. - С. 510-515.

2. Жуков Л. Ф. Идентификация объектов оптической термометрии по их тепловому излучению / Л. Ф. Жуков, А. В. Богдан // Вимірювальна техніка та метрологія. – 2009. – №70. - С. 96-103.

3. Свет Д. Я. Оптические методы измерения истинных температур / Д. Я. Свет - М.: Наука, 1982.

4. Поскачей А. А. Пирометрия объектов с изменяющимися излучательными характеристиками / А. А. Поскачей., Л. А. Чарихов – М.: Металлургия, 1978. – 200 с.

5. Снопко В. Н. Спектральные методы оптической пирометрии нагретой поверхности / В. Н. Снопко – Минск: Наука и техника, 1988. – 152 с.

6. Жагулло О. М. Метод пирометрии двойного спектрального отношения / О. М. Жагулло // Теплофизика высоких температур. – 1972, – №3, - С. 622-628.

7. Жагулло О. М. О возможности метода пирометрии двойного спектрального отношения / О. М. Жагулло // Тр. метрологических ин-тов. СССР. – 1975, - №181 (242). - С. 91-97.

8. Геда Я. М. Методы пирометрии по спектральному распределению интенсивности излучения нагретого тела / Я. М. Геда, В. Н. Снопко – Минск.: Ин-т. физики АН БССР, 1981. – 56 с.

9. Геда Я. М. Измерение температуры по распределению интенсивности в спектре излучения нагретого тела / Я. М. Геда, В. Н. Снопко // Теплофизика высоких температур. –1981. –№2. – С. 381-385.

10. Излучательные свойства твердых материалов: Справочник / Под общ. ред. А. Е. Шейндлина. М.: Энергия, 1974. – 474с.

ДОСЛІДЖЕННЯ ВПЛИВУ ОПТИЧНИХ ХАРАКТЕРИСТИК ПІРОМЕТРІЇ ВИПРОМІНЮВАННЯ НА ПОХИБКИ ЛІНІЙНОЇ БАГАТОКОЛЬОРОВОЇ СИМЕТРИЧНО-ХВИЛЬОВОЇ ТЕРМОМЕТРІЇ

Л. Ф. Жуков, А. Л. Корнієнко

Досліджено вплив оптичних характеристик багатокольорової пірометрії випромінювання і об'єктів що вимірюються методичні похибки лінійної симетричнохвильової пірометрії випромінювання. Встановлено, що навіть при суттєвих, перевищуючих реальні, відхиленнях, спектральних розподілів випромінювальної здатності від лінійних, похибки симетрично-хвильової термометрії не перевищують 0,5% і можуть бути додатково знижені оптимальним поєднанням оптичних характеристик пірометрії випромінювання. В досліджених умовах похибки відомих методів оптичної термометрії у 2,4 – 25,0 разів перевищують похибки симетричнохвильової пірометрії випромінювання.

RESEARCH OF INFLUENCE OPTICAL CHARACTERISTICS RADIATION PYROMETRY ON ERRORS OF MULTICOLOR LINEAR SYMMETRIC-WAVE THERMOMETRY

L. Zhukov, A. Korniyenko

The authors investigated influence of the optical characteristics of multicolor radiation pyrometry and thermometred objects on methodological errors of linear symmetrical-wave radiation pyrometry. They have determinate that even if significant deviations of the spectral distributions of emissivity from linear, the errors of the symmetrical-wave thermometry does not exceed 0,5% and can be further reduced by an optimum combination of the optical characteristics of radiation pyrometry. In the studied conditions of known errors of optical thermometry in 2,4 - 25,0 times higher than the error symmetrically-wave radiation pyrometry.