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Abstract 
The paper is devoted to solving the problem of building a control system for a special electro-
mechanical energy converter, which is due to the inverted structure of the stator and the pres-
ence of a solid hollow rotor made of ferromagnetic steel. The task of the control system is to 
ensure the speed of the rotor's run-up to a given value in a certain time and then maintain it 
regardless of load fluctuations. The task was solved due to the implementation of Field Ori-
ented Control (FOC) vector control with speed and current controllers and a phase locked loop 
(PLL). Despite the fact that from the point of view of the electric drive theory, the given task is 
not new, its solution using only ANSYS Twin Builder blocks is being solved for the first time. 
The peculiarity of this work is that the electromechanical converter in ANSYS Twin Builder is 
not presented in the form of a mathematical model and electric machine blocks built into the 
Twin Builder library, but through the solution of the ANSYS Maxwell 2D/3D coupling project 
and the ANSYS Twin Builder solver with co-simulation, which significantly increases the 
quality of calculations. The obtained results will be useful for solving similar problems for 
other types of electric machines, not only for the considered electromechanical converter of the 
asynchronous type with a solid rotor. 

  

INTRODUCTION 

The speed stabilization system of electromechanical 
energy converters is an important component to 
ensure stable operation of the entire system. The 
speed of an electric motor can vary due to various 
factors such as shaft load, supply voltage change, 
temperature change, etc. Stabilizing the speed al-
lows to avoid deviations in the system and ensure 
its stability. 

One of the features of speed stabilization is the 
use of a closed control system. This means that 
measuring devices installed on the motor shaft 
transmit information about the speed of rotation to 
the controller. The controller compares this data 
with the set speed value and performs appropriate 
corrective actions based on the received information. 

To fulfill the task of controlling and stabilizing 
the speed of an alternating current motor, the use of 

vector control was proposed, since vector control, in 
comparison with scalar control, has a higher per-
formance. 

Vector control is a method of controlling an elec-
tromechanical energy converter, which allows you 
to independently and practically inertialessly regu-
late the speed of rotation and the torque on the shaft 
of an AC electric motor [1–6]. The main idea of vec-
tor control is to control not only the magnitude and 
frequency of the supply voltage, but also the phase. 
In other words, the magnitude and angle of the 
spatial vector are controlled [7–12]. 

Field oriented control (FOC) is the most widely 
used among vector control [13–17]. FOC is a control 
method that controls a brushless AC motor in such 
a way that field and torque can be controlled sepa-
rately. In polyoriented control, the torque and field 
are controlled indirectly by controlling the compo-
nents of the stator current vector. The instantaneous 
value of the stator current vector is decomposed 
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mathematically into two components: the longitu-
dinal component of the stator current Isd, which 
creates a field, and the transverse component of the 
stator current Isq, which creates a torque. Thus, AC 
motor control can be performed using an inverter 
with pulse-width modulation (PWM), a linear PI 
controller, and a space-vector voltage modulation. 

Speed stabilization of electric motors using field-
oriented control can be successfully analyzed in the 
ANSYS Twin Builder software [18–25]. Previous 
work was described AC motor scalar control system 
in ANSYS Simplorer (now it is known as Twin 
Builder) [26]. ANSYS Twin Builder is software that 
allows to model and analyze the behavior of elec-
tromechanical systems under various conditions. In 
addition, the ANSYS Twin Builder program in 
combination with ANSYS Maxwell allows the use of 
various control algorithms, which ensures the opti-
mal operation of the electric motor under the given 
conditions. 

In the previous paper, a co-simulation of the 
Multifunctional Energy Converter (MFEC) was per-
formed in ANSYS Maxwell and Twin Builder [27]. 
In mentioned paper, the power supply of the MFEC 
was carried out from a static three-phase source 
without adjustment of the rotation speed.  

Current paper continues and improves previous 
studies [26, 27] and is devoted to the implementa-
tion of the FOC control system of the MFEC with 
inverter and space vector PWM. 

IMITATION MODEL 

Previously, the problem of induction motor speed 
control was solved based on scalar control system 
with sinusoidal PWM [26], however, the accuracy of 
maintaining the speed and run-up rate was not high, 
significant fluctuations of the speed curve around the 
guide were observed. This especially applies to the 
MFEC, which has a heavy rotor with a large moment 
of inertia (in the study, the mass of the rotor is 250 kg, 
and the value of the moment of inertia is 7 kg∙m2). To 
solve this problem, a vector control system with field 
orientation, the so-called FOC control, was imple-
mented [28, 29]. 

Such a problem from the point of view of the elec-
tric drive theory is not new and, in many works, it is 
solved using either purely ready-made Simulink 
blocks, or with coupling modeling in Ansys Twin 
Builder and Simulink, which is entrusted with FOC 
control [30-33]. In some works, there was an attempt 
to implement FOC control exclusively with Twin 
Builder tools, but they either contain an incomplete 
description of the model, or the run-up of the ma-
chine is uncontrollable in time. 

The following tasks are set in this work: 

 implement the power supply of the MFEC 
from a three-phase inverter; 

 MFEC must reach a given speed in a given 
time; 

 the speed curve should deviate as little as pos-
sible from the given trajectory; 

 implement FOC control only with Twin Build-
er tools; 

 perform modeling in Ansys Maxwell and Twin 
Builder coupling project, where the MFEC is 
imported into the Twin Builder sheet as a 
Maxwell 2D/3D object and is solved using the 
finite element method. 

The complete scheme of the model in Twin Build-
er is shown in Fig. 1. In Fig. 1 power part consists of a 
connection of a three-phase inverter fed by an ideal 
DC voltage source (500 V), active resistances and 
inductances of the stator winding phases, a MFEC 
object imported from Maxwell 2D/3D, and a load 
represented by the torque block F_ROT1 and STEP1 
module. The MASS_ROT1 block sets the moment of 
inertia of the rotor (7 kg∙m2). In the options of voltme-
ters and ammeters, the presence of an output port for 
connection to the control system is activated. 

The control system consists of 3 main parts: the 
PLL (Phase Locked Loop), the Speed Guide run-up 
tempo assignment block, and the Decoupled Control-
ler, which forms the switching signals of the inverter 
transistors using SVPWM (Space Vector Pulse and 
Width Modulation).  

The basic idea of the PLL system is a feedback 
system with a PI-regulator tracking the phase angle. 
Input is the three phases of the grid voltage and out-

put from the PLL is the phase angle  (teta) of one of 
the three phases. In the power supply substation 
there will be one inverter leg for each of the three 
phases. There are two alternatives, either assuming 
the grid voltages are in balance and track only one of 
the phases and then shift with 120 degrees for each of 
the other two phases or having three PLL systems, 
one for each phase [33]. 

The PLL block is shown separately in Fig. 2. The 
input of the abc/abz coordinate converter (provides 
the calculation from a, b, c to alpha, beta, zero trans-
form) receives signals from the voltmeters of the 
corresponding phases. Next, the following abz/dq0 
transformation is performed (provides the calculation 
from alpha, beta, zero to d, q, z_dq transform, with 
corresponding electrical angle from the motor). The 
purpose of the feedforward frequency, w (coming 
from angular velocity sensor VM_ROT1), is to have 
the PI-regulator (for this task, KP = 0.94; KI = 0.007; 
KD = 0) control for an output signal that goes to zero. 
The resulting phase angle theta is connected to the 
phi_e port of the abz/dq0 coordinate converter, and 
to the coordinate converter of the Decoupled Control-
ler block, which will be discussed in this paper below. 

In Fig. 3 shown the structure of the Speed Guide 
run rate task block.  
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Figure 1. MFEC FOC control system in ANSYS Twin Builder 

 

 

Figure 2. Structure of the PLL system in Twin Builder 

 

 

Figure 3. Speed Guide realization in ANSYS Twin Builder 
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Both STEP6 and INTEGRAL blocks forms time 
function (STEP6 block has Time Step value 0, Final 
Value 1 and Initial Value 1). GAIN6 block scales 
time value to starting time 1/t_start (time for motor 
run out from zero speed to the set value). LIMIT1 
block limits a signal at the level ±1. GAIN block 
with the label f has a rated frequency value, defined 
by target final speed (speed in rpm × 60 / pole 
pairs) and calculates actual frequency value in Hz 
according to the modelling time step. GAIN block 
with the label speed converts speed frequency value 
from Hz to rad/s and has value 60/p.  

Obtained speed value goes as a reference speed 
in Decoupled Controller. Decoupled controller real-
ized current and speed control system (Fig. 4). 
Signals from the ammeters of the corresponding 
phases and the phase angle theta calculated in the 
PLL block are fed to the input of the coordinate 
converter abc/dq0. 

There are two given values and two closed-loop 
controller in the FOC system. The two given values 
are given rotor angular speed (comes from Speed 
Guide as reference speed) and given rotor flux 
(1/Lm).  

The discrepancy between the given rotor angular 
speed and measured rotor angular speed feed the 
speed regulator PID_RPM (KP = 20; KI = 1; KD = 0), 
the output of the speed regulator is given torque 
current component for PID_iq. 

The discrepancy between the given torque cur-
rent component and the actual torque current com-
ponent iq feed the current regulator PID_iq (KP = 6; 

KI = 0.01; KD = 0), the output of the current regula-
tor is q input value for SVPWM. 

The discrepancy between the given flux current 
component (1/Lm, flux value is equal to 1 Wb) and 
actual flux current component id feed the other 
current regulator PID_id (KP = 6; KI = 0.01; KD = 0), 
the output of this current regulator is d input value 
for SVPWM. The outputs of the current regulators 
PID_id and PID_iq are applied to the inverse park 
transformation module dq0/abz (provides the cal-
culation from d, q, z_dq to alpha, beta, zero trans-
form, with corresponding electrical angle from the 
motor). The phase angle theta calculated in the PLL 
block is supplied to the phi_e port of the coordinate 
converter. The outputs of this projection are ud and 
uq which are the components of the Space Vector 
PWM. The outputs of SVPWM block are the signals 
that drive the inverter. 

SIMULATION RESULTS 

The whole FOC system simulation model is built, 
and the parameters of MFEC for simulation are as 
follows: rated voltage 380 V; target speed 300 rpm; 
number of pole pairs 4; Lm = 0.02 H; moment of 
rotor inertia 7 kg∙m2; time to reach target speed from 
zero 3 s.  

The given rotor flux is 1Wb. MFEC is starting 
with load 10 Nm and in time 4 s raised up to 120 
Nm. The whole time of the simulation is 6 s and the 
simulation time step is 10 us. The all-simulation 
results are shown in Fig. 5–8. 

 

 

 

Figure 4. Current and speed control system in ANSYS Twin Builder 
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(b) 

Figure 5. Three-phase voltages: (a) scaled fragment after 5s; (b) full time 
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(a) 
 

 

(b) 

Figure 6. Three-phase currents: (a) scaled fragment at time interval from 5s to 6 s; (b) full time 



61 Vladyslav Pliuhin, Yevgen Tsegelnyk, Oleksii Slovikovskyi, et al. 

 

Figure 7. Moving and load torque (blue line) 

 

Figure 8. Moving speed and speed guide reference (dotted line) 

CONCLUSIONS 

During the research, the task was set to implement 
the control system of the MFEC, which allows the 
rotor to run under load from zero speed to the spec-
ified speed in a certain time. The task was accom-
plished due to the implementation of a vector con-
trol system only using Ansys Twin Builder library 
tools. A feature of the solved problem was the cou-
pling modeling of the electric machine in Ansys 
Maxwell 2D/3D and the control system realized in 
Ansys Twin Builder. 

The simulation results showed high accuracy of 
speed maintaining on the given trajectory, full com-

pliance with the run-up trajectory in accordance 
with the given time and speed. 

The solved problem can and has been successful-
ly applied not only to the MFEC, which is an induc-
tion motor with a solid rotor, but also to an induc-
tion motor with a squirrel-cage rotor and a synchro-
nous motor with permanent magnets. 

The following studies will be related to the op-
timization of MFEC parameters and obtaining coef-
ficients of PID controllers. 
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Система стабілізації швидкості електромеханічних перетворювачів енергії в 
Ansys Twin Builder 

Владислав Плюгін, Євген Цегельник, Олексій Словіковський, Олексій Дунєв, Андрій Єгоров 

Анотація. У статті представлено розробку платформи сумісного моделювання  електромеханічного перетворю-
вача енергії з використанням ANSYS Maxwell та ANSYS Twin Builder. Електромеханічний перетворювач енергії, 
який досліджується, за принципом дії є асинхронним двигуном із зовнішнім порожнистим масивним ротором. В 
статті розкрита специфіка моделювання такого типу спеціальної електричної машини. В роботі виконано пое-
тапне моделювання машини в ANSYS RMxprt, експорт моделі в ANSYS Maxwell 2D та 3D. Показано, яким чином 
виконати налаштування проєкту для імпорту об’єкту, розрахованому методом скінченних елементів в ANSYS 
Maxwell у поле Twin Builder. Виконано сумісне моделювання електромеханічного перетворювача енергії при 
живленні від стабільного трифазного джерела. В імітаційній моделі врахована наявність ступінчастого механіч-
ного  навантаження під час розбігу до номінальної швидкості. Така структура сумісного проєкту дає більш якісні 
результати моделювання у порівнянні з використанням імітаційних моделей з зосередженими параметрами, 
заснованих на імплементації диференційних рівнянь електромагнітних перехідних процесів з використанням 
функціональних блоків. Одержані характеристики показали високий збіг очікуваних результатів за показника-
ми фазних струмів обмотки статора, обертального  моменту та швидкості. Дана робота буде корисна для прове-
дення моделювання електричних машин спеціального виконання, які відсутні у бібліотеці готових модулів 
ANSYS Twin Builder. 

Ключові слова: асинхронна машина, масивний ротор, зовнішній ротор, сумісне моделювання, ANSYS Maxwell, 
ANSYS Twin Builder.  
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