Analysis of the results obtained by the method of ampli-tude-independent inter-nal friction on metals and ionic crystals
Keywords:
dynamics of dislocations, amplitude-independent internal friction, frequency spectra of dislocation absorption of ultrasound, pre-deformation, the processes of detachment, Debye temperature, thermoactivating analysisAbstract
On today's time there are not works that would generalize results got in area of amplitude-independent internal friction. Having regard to the benefit of appearance in literature of review and comparative analysis of results of research of dislocations dynamics by the methods of amplitude-independent internal friction, and estimation of perspective further experimental and theoretical works in the indicated direction for the aim of this work we put it exactly. The analysis of the main results obtained in the field of research of the dynamics of dislocations using the method of amplitude-independent internal friction on different objects of study – metals and alkali-halide crystals was carried out. Revealed promising directions for further experimental work on this problematics. It can be stated that perspective directions for further work in this direction on ionic crystals are as follows. Firstly, it is conducting research on the influence of a magnetic field on the localization of frequency spectra of dislocation absorption of ultrasound in crystals. The presence of modern works convincingly indicates the high sensitivity of dislocation kinetics to the degree of magnetic processing of samples. The processing of the given experiment in the framework of the Granato-Lucke theory will allow us to determine the effect of magnetic processing on the dynamic and structural characteristics of the crystals, and the comparison in terms of the Alshits-Indenbom theory of the indicated data with those obtained earlier in the conditions of change in temperature, degree of pre-deformation and X-irradiation of samples will allow us to draw important conclusions about the activation of the process of dislocation motion by a magnetic field. Secondly, it is execution of thermoactivating analysis for unexplored ionic crystals, first of all, NaCl. Debye's low temperature for already studied crystals – CsJ, KBr, KCl allowed to study the processes of detachment at very high temperatures (up to 430 K). The transition to crystals with higher temperatures of the Debye will necessitate the modernization of experimental equipment for operation at higher temperatures. The relevance of further work in the direction of study of the processes of relaxation and dropping in crystals by the method of amplitude-independent internal friction also remains high.
References
[2] N.F. Mott. A theory of workhazdening of metal crystals // Phil. mag. 1952, V. 43, № 346, P. 1151 – 1178.
[3] J. Fridel. Anomaly in the rigitity modulus of copper allous for small concentration // Phil. mag. 1953, V. 44, № 351, P. 444 – 448.
[4] J. Weertman. Internal friction of metal single crystals // J. Appl. Phys.1955, V. 26, № 2, P. 202 – 210.
[5] J.S. Koehler. The influence of dislocations and impurities on the damping and the elastic constants of metal single crystals. Imperfections in nearly perfect crystals, New York, 1952, P. 197 – 216.
[6] V.I. Alshits, V.L. Indenbom. Dynamic drag of dislocations // Usp. Fiz. Nauk. 1975, V.115, № 3, P. 3 – 39.
[7] V.I. Alshits. “Phonon wind” and dislocation drag // FTT. 1969, V. 11, № 8, P. 2405 – 2407.
[8] T. Ninomiya. Dislocation vibration and phonon scattering // J. Phys. Soc. Japan. 1968, V. 25, № 3, P. 830 – 840.
[9] V.I. Alshits, Yu.M. Sandler. Flutter mechanism of dislocation drag // Phys. Stat. Sol. (b). 1974, V. 64, № 1, P. 45–49.
[10] V.I. Alshits. Raman scattering as a cause of dislocation drag // FTT. 1969, V. 11, № 5, P. 1336 – 1344.
[11] V.I. Startsev, V.Ya. Ilyichev, V.V. Pustovalov. Plasticity and strength of metals and alloys at low temperatures. М.: Меtallurgiya, 1975. – 328 с.
[12] R. Truell, Ch. Elbaum, B. Chik. Ultrasound methods in solid state physics. Moskva: “Mir”, 1972. 307 p.
[13] S.P. Nikanorov, B.K. Kardashov, Elasticity and Dislocation Inelasticity of Crystals. M.:Nauka, 1985, 256 р.
[14] V.S. Postnikov, Inernal friction in metals, М.: Мetalurgia, 1969. – 330 p.
[15] M.A. Krishtal, S.A. Golovin, Internal friction and metal structure, М.: Мetalurgia,1976. – 375 p.
[16] A.A. Botaki, A.A. Vorobev, V.A. Ulyanov, Radiation physics of ionic crystals, М.: Аtomizdat, 1980. – 208 p.
[17] E. Yu. Gutmanas, E.M. Nadgorny, A.V. Stepanov. Study of the motion of dislocations in sodium chloride crystals // FTT. 1963, V. 5, № 4, P. 1021 – 1026.
[18] V.B. Parijsky, S.V. Lubenets, V.I. Startsev. Mobility of dislocations in monocrystals of potassium bromide // FTT. 1966, V.8, № 4, P.1227 – 1238.
[19] S.V. Lubenets, V.I. Startsev. Mobility and interaction of dislocations with an impurity in crystals
[20] KCL:Ba2+ // FTT. 1968, V.10, № 1, P. 23 – 28.
[21] V.B. Parijsky, A.I. Tretyak. Temperature dependence of the mobility of dislocations in KBr single crystals // FTT. 1967, V. 9, № 9, P. 2457 – 2468.
[22] V.B. Parijsky, A.I. Landau, V.I. Startsev. On the discontinuous motion of dislocations in LiF single crystals // FTT. 1963,V. 5, № 5. – P. 1377 – 1385.
[23] V.B. Parijsky, A.I. Landau, V.M. Borzhkovskaya. Spontaneous dislocation jumps in LiF single crystals // FTT. 1963, V. 5, № 9, P. 2570–2575.
[24] G.A. Ermakov, E.M. Nadgorny. The mobility of dislocations in g - irradiated NaCl crystals. High speed range // FTT. 1971, V. 13, № 2, P. 513 – 519.
[25] I.V. Gectina, F.F. Lavrentiev, V.I. Startsev. Temperature dependence of the viscous drag coefficient of dislocations in zinc crystals // Physics of metals and metallography. 1974, V. 37, №.6, P. 1274 – 1277.
[26] O.I. Datsko. Dislocation internal friction of a material with vacancies in pulses of a weak magnetic field // FTT. 2002, V. 44, № 2, P. 289 – 290.
[27] O.I. Datsko, V.I. Alekseenko, A.L. Brusov. Effect of weak magnetic field pulses on grain-boundary relaxation in aluminum // FTT. 1999, V. 41, № 11, P. 1985 – 1987.
[28] E.V. Darinskaya, A.A. Urusovskaya, A.A. Bespalko, G.I. Gering. Investigation of the dynamics of dislocations during deformation of NaCl crystals by ultrashort irradiation pulses in an electron beam // FTT. 1982, V. 24, № 3, P. 940 – 941.
[29] E.V. Darinskaya, I.P. Makarevich, Yu.I. Meshcheryakov, V.A. Morozov, A.A. Urusovskaya. Study of the mobility of edge dislocations in LiF and NaCl crystals under pulsed electron-beam loading // FTT . 1982, V. 24, № 5, P. 1564 – 1566.
[30] E.V. Darinskaya, A.A. Urusovskaya, V.N. Opekunov, G.A. Abramchuk, V.A. Alekhin. Study of viscous dragging of dislocations in LiF crystals by the mobility of individual dislocations // FTT. 1978, V. 20, № 4, P. 1250 – 1252.
[31] E.V. Darinskaya, A.A. Urusovskaya, V.I. Alshits, V.A. Alekhin, A.A. Shemyakova. Features of deformation under pulsed loading of CsJ crystals and the dynamics of individual dislocations // FTT. 1981, V. 23, № 6, P. 1751 – 1755.
[32] E.V. Darinskaya, A.A. Urusovskaya. Temperature dependence of viscous drag of dislocations in LiF crystals // FTT. 1983, V. 25, № 6, P. 1892 – 1894.
[33] E.V. Darinskaya, A.A. Urusovskaya, V.I. Alshits, Yu.I. Meshcheryakov, V.A. Alekhin, R. Voska. Study of the mobility of “fast” dislocations and the kinetics of impulsive deformation under shock loading of NaCl crystals // FTT. 1983, V. 25, № 12, P. 3636 – 3641.
[34] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, R.K. Kotowski, E.A. Petrzhik, P.K. Tronczyk. Experimental studies and computer simulations of magnetoplastic effect // Pol.J.Appl.Sci. 2016, 2, P. 21 – 24.
[35] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, R.K. Kotowski, E.A. Petrzhik, P.K. Tronczyk. Dislocation kinetics in nonmagnetic crystals: a look through a magnetic window // Uspekhi Fizicheskikh Nauk, 2017, 60(30, P. 305 – 318.
[36] V.I. Alshits, M.V. Koldaeva, E.A. Petrzhik, A.Yu. Belov, E.V. Darinskaya. Determination of the positions of impurity centres in a dislocation core in a NaCl crystals from magnetoplastisity spectra // JETP Letters, 2014, V. 99, № 2, P. 82 – 88.
[37] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, E.A. Petrzhik. Electric stimulation of magnetoplastisity hardening in crystals // JETP Letters, 2008, V. 88, № 7, P. 428 – 434.
[38] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, E.A. Petrzhik. Electric amplification of the magnetoplastic effect in nonmagnetic crystals // Journal of applied physics, 2009, 105, P. 1 – 9.
[39] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, E.A. Petrzhik. Resonanse magnetoplastisity in ultralow magnetic fields// JETP Letters, 2016, V. 104, № 5, P. 353 – 364.
[40] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, E.A. Petrzhik. Anisotropic resonant magnetoplastisity of NaCl crystals in the Earth’s magnetic field// Physics of the solid state, 2013, V. 55, № 2, P. 358 – 366.
[41] V.I. Alshits, E.V. Darinskaya, E.A. Petrzhik. S.A. Erofeeva. On the relation between thermaly activated and magnetically stimulated prosesses during dislocation movement in InSb crystals in a magnetic field // JETP, 2006, V. 102, № 4, P. 646 – 651.
[42] Yu.I. Golovin. Magnetoplastic effects in solids // Physics of the solid state, 2004, V. 46, № 5, P. 769 – 803.
[43] V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, S.A. Minyukov, E.A. Petrzhik, V.A. Morozov, V.M. Kats, A.A. Lukin, A.E. Naimi. Resonanse magnetoplastisity in EPR scheme under ultralow magnetic fields // Bulletin of the Russian academy of science, 2014, V. 78, № 10, P. 1041 – 1051.
[44] Mobility and interaction dislocations with impurity in crystals KCL:Ba2+ / S.V. Lybenets, V.I. Startsev // FTT. 1968, Т.10, № 1, P..23 – 28.
[45] V. Naundorf, K.Lücke. Mechanisms of Internal Friction in Solids. M.:Nauka, 1976, 91 p.
[46] Yu.F. Boiko, S.V. Lubenets, L.S. Fomenko, N.М. Fedirenko. About study of dynamic properties of dislocations by the shock loading sample method // Izv. Vyzov. Fizika. 1978, № 7, P.129 – 131.
[47] T. Suzuki, A. Ikushima, M. Aoki. Acoustic attenuation studies of the frictional force on a fast moving dislocation // Acta met. 1964, V. 12, № 11, P. 1231 – 1240.
[48] W.P. Mason. Drag of dislocations due to termal losses of the phonon–phonon type // J. Appl. Phys. 1964, V. 35, № 9, P. 2779 – 2781.
[49] W.P. Mason, A. Rosenberg. Phonon and electron drag coefficient in single–crystal aluminiun // Phys. Rev. 1966, V. 151, № 2, P. 434 – 441.
[50] G. Leibfried. Uber den einflus therutins engeregter schallwellen auf die plastische deformation // Zs. Phys. 1950, Vl. 127, № 1, P. 344 – 351.
[51] T. Kaneda. Frictional force on a fast moving dislocation in cooper and its dilute allows // J. of the Phys. Soc. of Japan. 1970, V. 28, № 5, P. 1205 – 1211.
[52] G.A. Alers, D.O. Tompson. Dislocation contribution to the modulus and damping in copper at megacycle frequencies // J. Appl. Phys. 1961, V. 32, № 2, P. 283 – 293.
[53] R.M. Stern, A. Granato. Damped dislocation resonance in copper // Internal friction and defects in metals. M.: "Metallurgiya", 1965, P. 149-191.
[54] W.G. Johnston, J.J. Gilman. Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals // J. Appl. Phys. 1959, V. 30, № 2, P. 129 – 144.
[55] N.P. Kobelev, Y.M. Soifer, V.I. Alshits. The relation between viscous and relaxation components of dislocation damping of the high-frequency ultrasound in the copper // FTT. 1979, № 4 (21), p. 1172-1179.
[56] V.I. Alshits, А.M. Petchenko. About temperature dependency of dynamic dislocation drag. Mechanisms of internal frictions in solids, M: “ Nauka”, 1976, P. 29 –33.
[57] L.А. Yakovlev. Investigation of the frequency and amplitude dependences of the dislocation absorption of ultrasound in aluminum // Acoustic journal. 1965. V. ХI, №. 2, Р. 239 – 242.
[58] R. Hasiguti, N. Igata, M. Shimotomai. Frictional forces of moving dislocation in iron and iron allow crystals // J. of the Phys. Soc. of Japan. 1968, V. 24, P. 424 – 425.
[59] R.L. Roderick, R. Truell. The measurement of ultrasonic attenuation in solids by the pulse technique and some results in steel // J. Appl. Phys. 1952, V. 23, № 2, P. 267 – 279.
[60] W. Mason, MacDonald. Damping of dislocation in niobium by phonon viscosity // Journ. of Appl. Phys. 1971, V. 42, № 5, P. 1836 – 1842.
[61] P. Pal–Val, V. Platkov, V. Startsev. Temperature dependence of the dislocation drag constant in antimony // Phys. stat. sol. 1976, V. 38, P. 383 – 391.
[62] P.Р.Pal–Val, V.Ya. Platkov. Dislocation high-frequency internal friction in bismuth single crystals in the interval 4,2 – 300 К // Fizika Nizkikh Temperatur. 1977, V. 3, № 10, P. 1302 – 1313.
[63] L.G.Merculov. Absorption of ultrasonic waves in some alkali halide crystals // Acoustic journal. 1959, V. 5, №. 4, Р. 432 – 439.
[64] L.G.Merculov, L.A. Yakovlev. Ultrasound studies of deformed NaCl crystals // Acoustic journal, 1960, V. 6, № 2, P. 244 – 251.
[65] L.G.Merculov, R.V. Kovalionok, E.V. Konovodchenko. Temperature dependence of the absorption of ultrasonic waves in NaCl crystals // FTT. 1971, V. 13, № 4, P. 1171 – 1177.
[66] Е.V. Коrovkin, Ya.М. Soifer. The effect of dislocations on the attenuation of ultrasound in NaCl crystals // FTT. 1971, V. 13, №. 12, P. 3709 – 3710.
[67] N.P. Коbelev, Ya.М. Soifer. Viscous drag of dislocations in alkali halide crystals // FTT. 1976, V. 18, №. 4, P. 1073 – 1076.
[68] F. Fanti, J. Holder, A.V. Granato. Viscous drag on dislocation in LiF and NaCl // J. Acoust. Soc. Amer. 1969, V. 45, № 6, P. 1356 – 1366.
[69] A. Hikata, J. Deputat, C. Elbaum. Dislocation interactions with phonons in sodium chloride in the temperature range 77–300 K // Phys. Rev. 1972, V. 6, № 10, P. 4008 – 4013.
[70] A. Hicata, B. Сhick, C. Elbaum, R. Truell. Dislocation damping in sodium chloride // Appl. Phys. Let. 1963, V. 2, № 1, P. 5 – 6.
[71] A.V. Granato, J. de Clerk, R. Truell. Dispersion of elastic waves in sodium chloride // Phys. Rev. 1957, V. 108, № 3, P. 895 – 896.
[72] А.М. Petchenko, V.I. Моzgovoi, А.А. Urusovskaya. Viscous drag of dislocations in NaCl single crystals at temperatures 77–300 К // FTT. 1988, V. 30, № 10, P. 2992 – 2995.
[73] V.I. Моzgovoi, А.М. Petchenko, A.F. Sirenko. Investigations of the damping of dislocations of acoustic NaCl crystals by ultrasonic pulsed echo-method // Acoustic journal. 1990, V. 36, №. 1, P. 101 – 105.
[74] А.М. Petchenko. Dispersion of the velocity of longitudinal ultrasonic waves in NaCl crystalls // FTT. 1990, V. 2, № 11, P. 3362 – 3365.
[75] А.М. Petchenko. The effect of strain on the velocity dispersion of elastic waves in sodium chloride // Ukrainian journal of physics. 1990, V. 35, № 9, P. 1385 – 1387.
[76] А.М. Petchenko, D.L. Stroilova, V.I. Mozgovoy. Synthesis and investigation of optical materials. Kharkiv: “Institute of Monocrystals”, 1987, P. 133-139.
[77] А.А. Urusovskaya, V.I. Моzgovoi, А.М. Petchenko. Effect of pre-strain rate on stress relaxation in single NaCl crystals // JETP Letters. 1988, V. 14, № 13, P. 1176 – 1178.
[78] А.А. Urusovskaya, А.М. Petchenko, V.I. Моzgovoi. Speed sensitivity of stress relaxation in NaCl single crystals // FTT. 1989, V. 31, № 1, P. 195 – 199.
[79] А.М. Petchenko, V.I. Моzgovoi, A.F. Sirenko, А.А. Urusovskaya. Return of attenuation and ultrasound speed during stress relaxation in sodium chloride single crystals // FTT. 1989, V. 31, № 6, P. 127 – 130.
[80] A.A. Urusovskaya, A.M. Petchenko, V.I. Mozgovoi. The influence of strain rate on stress relaxation // Phys. stat. sol.(a).1991, V. 125, № 1, P. 155 – 160.
[81] H. Koizumi, I. Iwasa, M. Kakumoto, T. Suzuki. Study of dislocations in CsJ by simultaneous measurements of ultrasonic velocity and attenuation // J. Journ. of Appl. Phys. 1986, V. 25, P. 52 – 54.
[82] А.М. Petchenko, D.L. Stroilova, А.А. Urusovskaya. Temperature dependence of the coefficient of damping of dislocations in single CsJ crystals // FTT. 1988. V.30, № 11, P. 3455 – 3460.
[83] А.М. Petchenko, D.L. Stroilova, А.А. Urusovskaya, O.M. Smirnova. Dropping in cesium iodide crystals under various deformation conditions // FTT. 1990. V. 32, № 5, P. 1390 – 1393.
[84] А.М. Petchenko. The study of relaxation processes in CsJ acoustic method // Ukrainian journal of physics. 1990. V. 35, № 12, P. 1834 – 1837.
[85] А.М. Petchenko, D.L. Stroilova. Ultrasonic relaxation at droopimg in CsJ // FTT. 1991, V. 33, № 3, P. 938 – 940.
[86] А.М. Petchenko. Dislocation absorption of ultrasound in elastically deformed CsJ crystals // FTT. 1991, V. 33, № 5, P.1541 – 1544.
[87] А.М. Petchenko. The effect of static loading on the attenuation of ultrasound in CsJ at different temperatures // Ukrainian journal of physics. 1991, V. 36, № 5, P. 770 – 773.
[88] M.A. Krishtal, S.A. Golovin, I.V. Troitskij. Study of the parameters of the dislocation structure of copper by the ultra-sound pulse method // Phys. Metals and Metal science. 1973, V. 35, № 3, P. 632 – 639.
[89] Kh.M.Khalilov, A.I. Agaev. Ultrasound absorption in KCl single crystals in the megahertz frequency range // Izv. AN Аzerbajdg. SSR.1966, № 2, P. 82 – 86.
[90] Kh.M.Khalilov, A.I. Agaev. Dislocation absorption of ultrasound in deformed KCl crystals // FTT. 1971, V. 9, № 9, P. 2729 – 2731.
[91] V.М. Аndronov, А.М. Petchenko, V.I. Startsev. Temperature dependence of the coefficient of dislocation drag in potassium chloride at temperatures of 77 - 413 K // Acoustic journal. 1975, V. 21, № 4, P. 502 – 507.
[92] V.М. Аndronov, А.М. Petchenko. Ultrasound attenuation in deformed single crystals // Acoustic journal. 1976, V. 22, № 1, P. 1 – 4.
[93] A.M. Petchenko. Dislocation with phonon in KCl crystals // Functional Materials. 2000. V. 7, № 1, P. 94 – 97.
[94] O.M. Petchenko, G.O. Petchenko. Phonon drag of dislocations in KCl crystals with various dislocation structure states // Ukrainian journal of physics. 2010, V. 55, №. 6, P. 716 – 721.
[95] G.A. Petchenko, A.M. Petchenko. Influence of elastic stresses and temperature on the dislocation unpinning from the stoppers in KCl crystals // Functional Materials. 2015, № 3, P. 293 – 298.
[96] Petchenko G.A. Thermal activation analysis of the dislocation unpinning from stoppers in KCl crystals / G.A. Petchenko, A.M. Petchenko // Bullrtin of V.N. Karazin National University. 2015, №. 23, P. 28 – 31.
[97] O.M.M. Mitchel. Drag of dislocation in LiF // J. Appl. Phys. 1965, V. 36, № 12, P. 2083 – 2084.
[98] А.М. Petchenko, V.I. Startsev. Temperature dependence of the drag coefficient of dislocations in LiF crystals // FTT. 1974, V. 16, № 12, P. 3655 – 3559.
[99] А.М. Petchenko, A.F. Sirenko. The effect of plastic deformation on the frequency dependence of internal friction in LiF crystals // FTT. 1975, V. 17, № 11, P. 3373 – 3375.
[100] А.М. Petchenko. Interaction of dislocations with phonons in LiF crystals // Crystallography. 1992, V. 37, № 2, P. 458 – 462.
[101] A.M. Petchenko, G.A. Petchenko. Features of ultrasonic absorption in LiF crystals with varying dislocation density // Bullrtin of V.N. Karazin National University. 2009, 865, 12, с.39 – 44.
[102] G.A. Petchenko, A.M. Petchenko. The study of the dislocation resonance in LiF crystals under the influence of the low–dose X–irradiation // Functional Materials. 2010, V. 17, № 4, P. 421 – 424.
[103] G.O. Petchenko. Acoustic studies of the effect of X–ray irradiation on the dynamic drag of dislocations in LiF crystals // Ukrainian journal of physics. 2011, V. 56, № 4, P. 339 – 343.
[104] G.A. Petchenko. Study of dislocation loss of ultrasound in irradiated LiF single crystals in the range of radiation doses 0…400 Р // Problems of atomic science and technology. 2012, № 2(78), P. 36 – 39.
[105] G.A. Petchenko. Dynamic damping of dislocations in the irradiated LiF crystals // Functional Materials. – 2012.– V. 19, № 4, P. 473 – 477.
[106] G.A.Petchenko. Study of dynamic and structural characteristics in irradiated LiF crystals // Problems of atomic science and technology. 2013, № 2(84), P.55–59.
[107] G.A. Petchenko. Research of the preliminary deformation and irradiation effect on the viscous damping of dislocation in LiF crystals // Functional Materials. 2013, V. 20, № 3, P. 315 – 320.
[108] G.O. Petchenko, О.M. Petchenko. Research of the elastic wave velocity dispersion in X–ray–irradiated LiF crystals // Ukrainian journal of physics. 2013, V. 58, № 10, P. 974 – 979.
[109] G.O. Petchenko, О.M. Petchenko, S.M.Boiko. The investigation of X–ray irradiation on elastic, dynamical and structural characteristics of strained LiF crystals // Problems of atomic science and technology. 2018, № 2(114), P. 25 – 28.
[110] G.O. Petchenko, О.M. Petchenko, S.M.Boiko. The investigation of X–ray irradiation effect on the mobility of dislocations in LiF crystals // Problems of atomic science and technology. 2018, № 5(117), P. 16 – 20.
[111] V.Ya. Platkov, V.P. Efimenko, V.I. Startsev. Study of some dynamic characteristics of dislocations in potassium bromide crystals by the method of internal friction // FTT. 1967, V. 9, № 10, P. 2799 – 2803.
[112] V.P Matsokin, G.A. Petchenko. Viscous dislocation drag in KBr crystals at 77-300 K // Fizika Nizkikh Temperatur. 2000, V. 26, № 7, P. 705 – 710.
[113] G.A. Petchenko. Phonon damping of dislocations in potassium bromide crystals at different dislocation density values // Functional Materials. 2000, V. 7, № 4(2), P. 785 – 789.
[114] G.A. Petchenko. Study of ultrasound absorption by dislocations in KBr single crystals under low static stresses // Functional Materials. 2001, V. 8, № 3, P. 483 – 487.
[115] A.M. Petchenko, G.A. Petchenko. Features of resonance absorption of longitudinal ultrasound in strained crystals KBr at temperature variations // Functional Materials. 2007, V. 14, № 4, P. 475 – 479.
[116] G.A. Petchenko, A.M. Petchenko. Effect of crystal pre-straining on phonon damping of dislocations // Functional Materials. 2008, V. 15, № 4, P. 481 – 486.
[117] A.M. Petchenko, G.A. Petchenko. The dislocation resonance absorption of ultrasound in KBr crystals at low temperatures // Functional Materials. 2009, V. 16, № 3, P. 253 – 257.
[118] V.М. Chernov. Mobility of dislocations in crystals with centers of pinning // FTT. 1973, V. 15, № 4, P. 1159 – 1166.
[119] G.A. Petchenko, S.S. Ovchinnikov. Effect of the preliminary deformation and irradiation on the optical absorption in LiF crystals // Problems of Atomic Science and Technology. Series “Physics of Radiation Effect and Radiation Materials Science”. 2014, N 2(90), p. 29-33.
[120] G.A. Petchenko, A.M. Petchenko. Dependence of electronic color center concentration on the state of irra-diated LiF crystal dislocation structure // Problems of Atomic Science and Technology. Series “Physics of Ra-diation Effect and Radiation Materials Science”. 2015, N 2(96), p. 25-28.
[121] A. Smakula. Uber Erregung und Entfarbung lichtelektrisch leitender Alkalihalogenide // Z. Physik. 1930, N 9-10 (59), р. 603-614.
[122] А. Smakula, P. Avakiant. Color centers in ce-sium halide single crystals // Phys. Rev. 1960, N 6, p. 2007-2014.
[123] D.L. Dexter. Absorption of light by atoms in solids // Phys. Rev. 1956, N 101, p. 48-55.
[124] V.M. Lisitzyn. Radiation solid state physics. Tomsk: “Izdatelstvo Tomskogo Politekhnicheskogo Universiteta”, 2008, 172 p. (in Russian).
[125] M.V. Galustashvili, M.G. Abramishvili, D.G. Driaev, V.G. Kvachadze. Effect of magnetic field on the radiation hardening LiF crystals // FTT. 2011, N 53(7), p. 1340-1342 .
[126] T. Klempt, S. Schweiser, K. Schwartz, et al. Magnetic resonance unvestigation of the dynamics of F centers in LiF // Solid State Communications. 2001, N 119, p. 453-458.
Downloads
Published
How to Cite
Issue
Section
License
The authors that are published in this journal agree with the following terms:
- The authors reserve the right of authorship of his work and pass to the journal the right of first publication of this work is licensed under a Creative Commons Attribution License, which allows others to freely distribute published work with reference to authors of original works and works first published in this journal.
- The authors have the right to enter into a separate additional agreement for non-exclusive distribution of work in the form in which it was published in the magazine (for example, to place work in electronic storage agencies or publish as part of the monograph), providing the reference to the first publication in this journal.
- Journal policy allows and encourages the placement by the authors on the Internet (eg, in storage facilities or personal websites) the manuscript of the works before the submission of the manuscript to the editor as well as during its editorial processing, as it contributes to productive scientific discussion and has a positive impact on efficiency and dynamics citing published work (see. The Effect of Open Access).