Design and Simulation of a Servo-Drive Motor Using ANSYS Electromagnetics

Authors

  • Vladyslav Pliuhin O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine
  • Oleksandr Aksonov O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine
  • Yevgen Tsegelnyk O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine
  • Sergiy Plankovskyy O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine
  • Volodymyr Kombarov O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine
  • Lidiia Piddubna O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

DOI:

https://doi.org/10.33042/2079-424X.2021.60.3.04

Keywords:

Servo-drive Motor, Incorporated Magnets, ANSYS Simplorer, Twin Builder, Motor Parameters

Abstract

The paper is devoted to determining the output parameters of a servomotor, which belongs to synchronous machines with permanent magnets, in order to further determine the characteristics of transient modes in the software package ANSYS Electromagnetics. RMxprt, part of ANSYS Electromagnetics, allows to determine the parameters of windings, losses, motor performance, but requires filling out a form with a complete set of geometric dimensions and winding data. Of course, such data are not available in the motor data sheet, so the first task solved in the paper is to determine all the necessary and sufficient parameters to perform the calculation in RMxprt. The results of the calculations were compared with the measurements on the experimental servomotor EMG-10APA22. This paper shows how to export a servomotor object from RMxprt to the Simplorer workspace, which is also part of the ANSYS Electromagnetics. According to the simulation results in ANSYS Simplorer, the characteristics of the transient modes of the servomotor powered by a stable three-phase source are obtained. Prospects for further research related to the improvement of the simulation model in ANSYS Simplorer are presented.

Author Biographies

Vladyslav Pliuhin, O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

D.Sc., Professor of the Department of Urban Power Supply Systems and Power Consumption

Oleksandr Aksonov, O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

Postgraduate student of the Department of Urban Power Supply Systems and Power Consumption

Yevgen Tsegelnyk, O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

Ph.D., Associate Professor of the Department of Automation and Computer-Integrated Technologies

Sergiy Plankovskyy, O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

D.Sc., Professor of the Department of Automation and Computer-Integrated Technologies

Volodymyr Kombarov, O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

Ph.D., Associate Professor of the Department of Automation and Computer-Integrated Technologies

Lidiia Piddubna, O. M. Beketov National University of Urban Economy in Kharkiv, Ukraine

Ph.D., Associate Professor of the Department of Automation and Computer-Integrated Technologies

References

Nicolescu, A., Avram, C., & Ivan, M. (2014). Optimal servomotor selection algorithm for industrial robots and machine tools NC axis. Proceedings in Manufacturing Systems, 9(2), 105–114. http://icmas.eu/Journal_archive_files/Vol_9-Issue2_2014_PDF/105-114_Nicolescu.pdf

Yamazaki, T. (2017). Experimental study on dynamic behavior of high precision servo motor for machine tools. Applied Mechanics and Materials, 863, 224–228. https://doi.org/10.4028/www.scientific.net/AMM.863.224

Kombarov, V., Sorokin, V., Tsegelnyk, Y., Plankovskyy, S., Aksonov, Y., & Fojtů, O. (2021). Numerical control of machining parts from aluminum alloys with sticking minimization. International Journal of Mechatronics and Applied Mechanics, 1(9), 209–216. https://doi.org/10.17683/ijomam/issue9.30

Abdul Ali, A.W., Abdul Razak, F.A., & Hayima, N. (2020). A review on the AC servo motor control systems. ELEKTRIKA – Journal of Electrical Engineering, 19(2), 22–39. https://doi.org/10.11113/elektrika.v19n2.214

Hossain, A., & Rasheduzzaman, M. (2011). Integrating servomotor concepts into mechatronics engineering technology curriculum emphasizing high speed packaging machinery. In 2011 ASEE Annual Conference & Exposition (p. 22.915). ASEE. https://doi.org/10.18260/1-2--18244

Voss, W. (2007). A Comprehensible Guide to Servo Motor Sizing. Copperhill Media.

Vagati, A., Fratta, A., Franceschini, G., & Rosso, P. (1996). AC motors for high-performance drives: a design-based comparison. IEEE Transactions on Industry Applications, 32(5), 1211–1219. https://doi.org/10.1109/28.536885

Huang, C., Lei, F., Han, X., & Zhang, Z. (2019). Determination of modeling parameters for a brushless DC motor that satisfies the power performance of an electric vehicle. Measurement and Control, 52(7-8), 765–774. https://doi.org/10.1177/0020294019842607

ESTUN. (2021). AC Servo Motor. http://estun.com.ua/pdf/ac_servo_motor.pdf

Shinde, P.S., Thosar, A.G., & Ratnani, P.L. (2015). Design of permanent magnet synchronous motor. International Journal of Scientific & Engineering Research, 6(1), 107–110. https://ijser.org/researchpaper/design-of-permanent-magnet-synchronous-motor.pdf

Shen, Q., Sun, N., Zhao, G., Han, X., & Tang, R. (2010). Design of a permanent magnet synchronous motor and performance analysis for subway. In 2010 Asia-Pacific Power and Energy Engineering Conference (pp. 1–4). IEEE. https://doi.org/10.1109/APPEEC.2010.5449212

Isfahani, A.H., & Sadeghi, S. (2008). Design of a permanent magnet synchronous machine for the hybrid electric vehicle. World Academy of Science, Engineering and Technology, 45, 566–570. https://doi.org/10.5281/zenodo.1332212

Panigrahi, B.P., Patra, K.C., Subbarao, V., & Prasad, D. (1999). Design of a permanent magnet synchronous motor. Electric Machines & Power Systems, 27(7), 771–779. https://doi.org/10.1080/073135699269000

Akar, M., & Temiz, I. (2007). Motion controller design for the speed control of DC servo motor. International Journal of Applied Mathematics and Informatics, 4(1), 131–137. http://www.wseas.us/journals/ami/ami-19.pdf

Zhang, Y., Yang, Z., Yu, M., Lu, K., Ye, Y., & Liu, X. (2011). Analysis and design of double-sided air core linear servo motor with trapezoidal permanent magnets. IEEE Transactions on Magnetics, 47(10), 3236–3239. https://doi.org/10.1109/TMAG.2011.2156398

Hanselman, D.C. (2003). Brushless Permanent Magnet Motor Design. The Writers’ Collective.

Chenwei, Y., Fei, D., Yi, A., & Fengqing, Z. (2021). Design and analysis of permanent magnet synchronous servo motor with low rotational inertia and high torque density. Journal of Physics: Conference Series, 1965(1), 012010. https://doi.org/10.1088/1742-6596/1965/1/012010

Deeb, R., Janda, M., & Makki, Z. (2012). Comparison of 2D and 3D FEM analysis of the magnetic field in a PM servo motor. Electrical Engineering, 72, 297–309. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-2e33696a-32cc-4941-8c0a-4369c102e081/c/deeb_ramia_comparison_72_2012.pdf

Pliugin, V., Petrenko, O., Grinina, V., Grinin, O., & Yehorov, A. (2017). Imitation model of a high-speed induction motor with frequency control. Electrical Engineering & Electromechanics, (6), 14–20. https://doi.org/10.20998/2074-272X.2017.6.02

Gope, D., & Goel, S.K. (2021). Design optimization of permanent magnet synchronous motor using Taguchi method and experimental validation. International Journal of Emerging Electric Power Systems, 22(1), 9–20. https://doi.org/10.1515/ijeeps-2020-0169

Luu, P.T., Lee, J.Y., Lee, J.H., & Woo, B.C. (2019). Design and analysis of a permanent magnet synchronous motor considering axial asymmetric position of rotor to stator. Energies, 12(24), 4816. https://doi.org/10.3390/en12244816

Ding, W.T., An, L.X., Wang, C.M., Huang, Y.P., Long, T., & Jiang, M.L. (2015). Multidisciplinary integrated simulation and design optimization framework for electromechanical servo system. Applied Mechanics and Materials, 704, 263–269. https://doi.org/10.4028/www.scientific.net/AMM.704.263

Lu, H., & Guru, A.K. (2013). Modeling conducted emissions in servo drives. In 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) (pp. 999–1004). IEEE. https://doi.org/10.1109/ICIEA.2013.6566513

Lei, H., Chen, Y., Chen, D., Li, Z., & Zhu, H. (2021). Design and analysis of permanent magnet AC servo motor based on ANSYS. Journal of Physics: Conference Series, 1754(1), 012151. https://doi.org/10.1088/1742-6596/1754/1/012151

Krishnan, R. (1987). Selection criteria for servo motor drives. IEEE Transactions on Industry Applications, IA-23(2), 270–275. https://doi.org/10.1109/TIA.1987.4504902

Qiu, H., Zhang, Y., Yang, C., & Yi, R. (2020). Analysis of permanent magnet servo motor performance with different semi-ferromagnetic sleeve materials. Transactions of the Canadian Society for Mechanical Engineering, 45(1), 11–21. https://doi.org/10.1139/tcsme-2019-0201

Shavkun, V. (2020). Methodology for the assessment of the operation reliability of pulling electric machines of city electric transport. Lighting Engineering & Power Engineering, 58(2), 58–64. https://doi.org/10.33042/2079-424X-2020-2-58-13-19 (in Ukrainian)

Pliuhin, V., Korobka, V., Karyuk, A., Pan, M., & Sukhonos, M. (2019). Using Azure Machine Learning Studio with Python scripts for induction motors optimization web-deploy project. In 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T) (pp. 631–634). IEEE. https://doi.org/10.1109/PICST47496.2019.9061447

Pliuhin, V., Sukhonos, M., & Bileckiy, I. (2020). Object oriented mathematical modeling of electrical machines. In 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS) (pp. 267–272). IEEE. https://doi.org/10.1109/IEPS51250.2020.9263158

Downloads

Published

2021-12-30

How to Cite

Pliuhin, V., Aksonov, O., Tsegelnyk, Y., Plankovskyy, S., Kombarov, V., & Piddubna, L. (2021). Design and Simulation of a Servo-Drive Motor Using ANSYS Electromagnetics. Lighting Engineering & Power Engineering, 60(3), 112–123. https://doi.org/10.33042/2079-424X.2021.60.3.04