Реактивна потужність асинхронних електроприводів з напівпровідниковими перетворювачами напруги
Ключові слова:
асинхронний двигун, напівпровідниковий перетворювач, реактивна потужність.Анотація
Метою статті є отримання співвідношення для визначення реактивної потужності асинхронних двигунів при їх живленні від напівпровідникових перетворювачів напруги. Задача полягає у визначенні залежності реактивної потужності від параметрів керування перетворювачами. Як метод дослідження було обрано комп'ютерне моделювання електропривода на основі теорії потужності Фризе для несинусоїдних струмів. В результаті отримано вираз для розрахунку реактивної потужності, який враховує номінальний струм неробочого ходу двигуна при синусоїдному живленні та тип перетворювача за рахунок уведених спеціальних коефіцієнтів. Числові значення останніх в залежності від параметру керування отримуються на комп'ютерних моделях з їх подальшою апроксимацією. У якості наукової новизни, набула подальшого розвитку теорія потужності Фризе в напрямку декомпозиції складових несинусоїдного струму з використанням комп’ютерних моделей. Практична значимість полягає в отриманні виразу для визначення реактивної потужності асинхронного електропривода з тиристорним перетворювачем напруги, на основі якого розраховується ємність компенсуючих конденсаторів для підвищення його енергоефективності.
Посилання
Jeon, S.J. (2020). Passive-component-based reactive power compensation in a non-sinusoidal multi-line system. Electrical Engineering, 102, 1567–1577. https://doi.org/10.1007/s00202-020-00979-8
Andrei, H., Andrei, P.C., Cazacu, E., & Stanculescu, M. (2017). Fundamentals of reactive power in AC power systems. In N. Mahdavi Tabatabaei, A. Jafari Aghbolaghi, N. Bizon, & F. Blaabjerg (Eds), Reactive Power Control in AC Power Systems (pp. 49–115). Springer. https://doi.org/10.1007/978-3-319-51118-4_2
Chica Leal, A.D.J., Trujillo Rodríguez, C.L., & Santamaria, F. (2020). Comparative of power calculation methods for single-phase systems under sinusoidal and non-sinusoidal operation. Energies, 13(17), 4322. https://doi.org/10.3390/en13174322
Qawaqzeh, M.Z., Bialobrzheskyi, O., & Zagirnyak, M. (2019). Identification of distribution features of the instantaneous power components of the electric energy of the circuit with polyharmonic current. Eastern-European Journal of Enterprise Technologies, 2(8-98), 6–13. https://doi.org/110.15587/1729-4061.2019.160513
Bialobrzeski, O.V., & Rodkin, D.I. (2019). Alternative indicators of power of electric energy in a single-phase circuit with polyharmonic current and voltage. Electrical Engineering & Electromechanics, 1, 35–40. https://doi.org/10.20998/2074-272X.2019.1.06
Wang, J., & Duan, C. (2010). Equivalent power spectrum analysis method for feature extraction. In 2010 International Conference on Measuring Technology and Mechatronics Automation (Vol. 2, pp. 120–123). IEEE. https://doi.org/10.1109/ICMTMA.2010.222
Emanuel, A.E. (2010). Power definitions and the physical mechanism of power flow. John Wiley & Sons. https://doi.org/10.1002/9780470667149
Jeltsema, D. (2015). Budeanu's concept of reactive and distortion power revisited. In 2015 International School on Nonsinusoidal Currents and Compensation (ISNCC) (pp. 1–6). IEEE. https://doi.org/10.1109/ISNCC.2015.7174697
Willems, J.L. (2011). Budeanu's reactive power and related concepts revisited. IEEE Transactions on Instrumentation and Measurement, 60(4), 1182–1186. https://doi.org/10.1109/TIM.2010.2090704
Zagirnyak, M., Korenkova, T., & Kovalchuk, V. (2014). Estimation of electromechanical systems power controllability according to instantaneous power components. In 2014 IEEE International Conference on Intelligent Energy and Power Systems (IEPS) (pp. 266–272). IEEE. https://doi.org/10.1109/IEPS.2014.6874192
Bialobrzheskyi, O., Rod'kin, D., & Gladyr, A. (2018). Power components of electric energy for technical and commercial electricity metering. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 70–79. https://doi.org/10.29202/nvngu/2018-2/10
Shurub, Y.V., Vasilenkov, V.Y., & Tsitsyurskiy, Y.L. (2018). Investigation of properties of combined scheme of single-phase switching of induction electric drive of pumping plants. Technical Electrodynamics, 2018(6), 50–53. https://doi.org/10.15407/techned2018.06.050
Malyar, V., Hamola, O., & Maday, V. (2016). Calculation of capacitors for starting up a three-phase asynchronous motor fed by single-phase power supply. In 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE) (pp. 1–4). IEEE. https://doi.org/10.1109/CPEE.2016.7738735
Kovalova, Y., Kovalova, V., & Feteev, V. (2019). Asynchronous phase rotor motor in reactive power compensator mode. Lighting Engineering & Power Engineering, 2(55), 63–67. https://doi.org/10.33042/2079-424X-2019-2-55-63-67
Bondar, O., Kostin, M., Mukha, A., Sheikina, O., & Levytska, S. (2019). Fryze reactive power of trams in effective stochastic recuperation processes. MATEC Web of Conferences, 294, 01006. https://doi.org/10.1051/matecconf/201929401006
Tugay, D., Zhemerov, G., Korneliuk, S., & Kotelevets, S. (2019). Three theoremes of the instantaneous power theory. In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp. 289–294). IEEE. https://doi.org/10.1109/UKRCON.2019.8879901
Batygin, Y., Shinderuk, S., Chaplygin, E., Gavrilova, T., & Bespalov, K. (2020). Suggestion, calculations, practical approbation of the resonant amplifier of the reactive electrical power. Lighting Engineering & Power Engineering, 2(58), 65–72. https://doi.org/10.33042/2079-424X-2020-2-58-20-27
Zhemerov, G.G., & Tugay, D.V. (2015). Physical meaning of the «Reactive Power» concept applied to three-phase energy supply systems with non-linear load. Electrical Engineering & Electromechanics, 6, 36–42. https://doi.org/10.20998/2074-272X.2015.6.06
Morsi, W.G., & El-Hawary, M.E. (2007). Defining power components in nonsinusoidal unbalanced poly-phase systems: the issues. IEEE Transactions on Power Delivery, 22(4), 2428–2438. https://doi.org/10.1109/TPWRD.2007.905344
Vieira, D., Shayani, R.A., & de Oliveira, M.A.G. (2017). Reactive power billing under nonsinusoidal conditions for low-voltage systems. IEEE Transactions on Instrumentation and Measurement, 66(8), 2004–2011. https://doi.org/10.1109/TIM.2017.2673058
dos Santos, N.G.F., Hey, H.L., Zientarski, J.R.R., & da Silva Martins, M.L. (2020). Piecewise Fryze power theory analysis applied to PWM DC–DC converters. IET Power Electronics, 13(10), 2029–2038. https://doi.org/10.1049/iet-pel.2019.1053
Wang, D., Zhang, L., Wang, C., Liu, S., & Liu, Q. (2019). A harmonic detection strategy based on FBD power theory. In 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) (pp. 1–5). IEEE. https://doi.org/10.1109/APPEEC45492.2019.8994402
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Світлотехніка та Електроенергетика
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).